Comparing Time Based Service Charges

Comparing Time Based Service Charges

Overview of typical electronic devices and their functions

The e-waste processing industry is a rapidly growing sector, driven by the increasing generation of electronic waste worldwide. Their services contribute to maintaining clean and organized spaces concrete removal bbqs. As technology continues to advance at an unprecedented pace, the life cycle of electronic devices has shortened considerably, leading to a surge in discarded gadgets. This burgeoning volume of e-waste presents both opportunities and challenges for the industry tasked with its management and disposal.




Comparing Time Based Service Charges - HVAC

  1. electronics
  2. hot tub
  3. HVAC

At its core, the e-waste processing industry is concerned with the collection, recycling, and safe disposal of electronic products that have reached the end of their useful life. The central aim is to recover valuable materials such as gold, silver, copper, and palladium while minimizing environmental harm. However, navigating this landscape requires addressing significant obstacles related to logistics, regulatory compliance, technological innovation, and market dynamics.


One pressing challenge is the efficient collection and transportation of e-waste from diverse sources. Unlike traditional waste streams that are relatively straightforward to manage due to predictable patterns of generation and disposal, e-waste originates from various sectors including households, businesses, and institutions. This diversity complicates efforts to establish streamlined collection systems. Furthermore, varying levels of public awareness about proper e-waste disposal exacerbate this issue.


Regulatory frameworks also play a critical role in shaping the operations of the e-waste processing industry. Across different regions and countries, there exists a patchwork of laws governing e-waste management practices. These regulations often dictate specific requirements for recycling processes and set targets for recovery rates. Navigating these complex legal landscapes demands substantial resources from companies operating within this space.


Technological advancements represent another dual-edged sword for those involved in e-waste processing. While innovations can enhance recovery efficiencies and create new markets for secondary raw materials derived from recycled electronics components-such as rare earth elements used in green technologies-they also necessitate constant upgrades to existing facilities at considerable cost.


In terms of market dynamics influencing time-based service charges-a comparison reveals variability depending on several factors including geographic location; local regulations; scale economies achieved through large volumes processed; degree automation integrated into sorting/dismantling operations among others-all contributing towards final pricing structures imposed by service providers engaged across different segments within broader supply chains associated specifically around handling/disposal/recycling activities pertinent towards alleviating burdens posed upon natural ecosystems resulting primarily due unchecked proliferation discarded consumer electronics over recent decades globally observed phenomenon increasingly gaining attention not only policymakers but general public alike concerned future sustainability planet overall wellbeing humanity itself dependent therein upon successful resolution emerging crises confronting us today tomorrow hereafter indefinitely prolonged horizons envisaged ahead potentially impacting generations come unless addressed promptly adequately requisite urgency demanded current circumstances prevailing environment globally experienced firsthand daily basis reality confronted multitude stakeholders vested interest participating active manner seeking viable solutions mutually beneficial outcomes desired parties involved entire process lifecycle encompassing varied stages commencement initial production final cessation ultimate decommissioning respective individual units constituting collective mass referred generically under umbrella term 'eWaste' encapsulating wide array divergent items falling category inevitably destined subsequently requiring appropriate treatment measures adoption ensure minimal detrimental effects arising consequent lack thereof implementation effective strategies mitigating adverse consequences stemming failure action timely fashion imperative necessity undeniable importance realized universally acknowledged accepted truth present day context contemporary society functions interconnected network interdependent entities reliant continued cooperation collaboration mutual respect understanding shared vision common objective achieving sustainable development goals established international community ongoing dialogue negotiations forums summits conferences dedicated addressing pressing issues facing world momentous occasion pivotal juncture history marked unprecedented challenges opportunities alike awaiting exploration exploration creative innovative approaches transformative change desired aspirational ideals translating tangible results measurable progress forward journey embarked collective endeavor undertaken betterment holistic well-rounded perspective embraced wholeheartedly commitment unwavering determination resolve

In recent years, the management of electronic waste (e-waste) has emerged as a critical issue due to the rapid advancement and proliferation of technology. As society becomes increasingly reliant on electronic devices, the challenge of safely and efficiently disposing of obsolete or broken gadgets grows more pressing. Various models have been proposed to address this challenge, with time-based charges for e-waste services standing out as an innovative solution. This approach offers several advantages that make it a compelling option for both service providers and consumers.


One major advantage of implementing time-based charges is the promotion of efficiency in e-waste disposal services. By charging based on time, service providers are incentivized to streamline their operations, ensuring that resources are utilized effectively and that tasks are completed promptly. This focus on efficiency can lead to cost savings, which might be passed down to consumers in the form of reduced fees or enhanced services.


Furthermore, time-based charges encourage transparency in pricing structures. Often, e-waste disposal costs are opaque, leaving consumers uncertain about what they are paying for. With a clear correlation between time spent and cost incurred, consumers gain a better understanding of how their money is being used. This transparency fosters trust between service providers and customers, potentially increasing customer satisfaction and loyalty.


Another significant benefit is the potential environmental impact. Time-based charging can motivate both providers and consumers to minimize delays in processing e-waste. For instance, if prolonged storage incurs additional costs due to extended handling times, clients may be more inclined to consolidate or prepare e-waste more efficiently before collection, thereby reducing overall processing times and associated environmental risks.


Moreover, this model can lead to improved resource allocation within companies offering these services. By analyzing data from time-based charging systems, businesses can identify bottlenecks or inefficiencies in their processes. They can then adjust staffing levels or invest in technologies that enhance productivity during peak periods, optimizing their operations further.


The flexibility offered by time-based charges is another noteworthy advantage. Different clients have varying needs; some may require quick turnaround times while others might be less concerned with speed but focused on cost savings. Time-based pricing allows service providers to cater to diverse client requirements without compromising on quality or efficiency.


Lastly, adopting a time-oriented approach could spur innovation within the industry itself. Companies striving for competitive advantage will likely invest in advanced technologies or methods that expedite e-waste handling while maintaining high standards of safety and environmental compliance.


In conclusion, transitioning towards time-based charges for e-waste services presents multiple benefits-ranging from operational efficiencies and transparent pricing models to enhanced environmental outcomes and increased flexibility for clients. As our digital world continues its rapid expansion into every facet of daily life, embracing such forward-thinking solutions will prove integral not just for managing waste but also for fostering sustainable practices across industries globally.

Our Company on Twitter:

More About Us on Facebook:

How to Reach Us


Junk Removal Services Shift to Eco-Friendly Models with Sustainable Pricing Plans

Junk Removal Services Shift to Eco-Friendly Models with Sustainable Pricing Plans

As the global consciousness around environmental sustainability continues to rise, industries across the board are reevaluating their practices, and the junk removal sector is no exception.. The future of junk removal services is poised for a significant shift towards eco-friendly models with sustainable pricing plans, reflecting both consumer demand and environmental necessity. In recent years, society has become increasingly aware of the detrimental impacts of waste on our planet.

Posted by on 2024-12-07

Challenges and Opportunities in Scaling Up Global E-Waste Processing Networks

Challenges and Opportunities in Scaling Up Global E-Waste Processing Networks

The rapid advancement of technology has been both a boon and a bane for the modern world.. On one hand, it has revolutionized communication, education, and commerce; on the other, it has led to an unprecedented surge in electronic waste (e-waste).

Posted by on 2024-12-07

Consumer Advocacy Drives Changes in Junk Removal Fee Structures Worldwide

Consumer Advocacy Drives Changes in Junk Removal Fee Structures Worldwide

In recent years, consumer advocacy has emerged as a powerful force driving significant changes in the global waste management industry, particularly in the realm of junk removal fee structures.. As environmental awareness grows and consumers become increasingly concerned about sustainable practices, their collective voice is reshaping how companies approach waste disposal.

Posted by on 2024-12-07

Stages of the Electronic Device Lifecycle

Time-based pricing models, where services are billed based on the amount of time spent rather than a fixed price or another metric, have long been a staple in various industries. From legal practices to consulting firms, this approach offers transparency and aligns cost with effort. However, while there are clear advantages to this model, it is not without its drawbacks and limitations.


One significant limitation of time-based pricing is its inherent focus on input rather than output. This model places value on the duration of the service provided rather than the quality or efficiency of the outcome.

Comparing Time Based Service Charges - electronics

  1. customer satisfaction
  2. mattress
  3. College Hunks Hauling Junk & Moving
Consequently, service providers might lack motivation to work efficiently or deliver quick solutions if they are compensated more for longer hours. In competitive markets where innovation and speed are crucial, this can be a substantial disadvantage.


Another potential drawback is client dissatisfaction stemming from unpredictability in pricing. Clients often prefer knowing upfront how much a service will cost them. Time-based pricing can lead to unexpected expenses as projects may take longer than initially anticipated due to unforeseen complications or inefficiencies in execution. This unpredictability can strain client-provider relationships and deter clients from opting for such services in the future.


Administrative burdens also present challenges within time-based pricing models. Accurate tracking of billable hours requires meticulous record-keeping and robust systems to ensure transparency and fairness for both parties involved. Errors in time tracking can lead to disputes over billing accuracy, prompting distrust between clients and service providers.


Moreover, this model might inadvertently create inequities among staff within an organization. Employees with different levels of expertise or varying working speeds could end up being compensated disproportionately if their worth is solely measured by hours worked rather than results achieved. Such scenarios could demotivate high-performing employees who feel undervalued compared to slower or less efficient colleagues.


Finally, time-based pricing may stifle creativity and innovation. When professionals are tied to clocking hours instead of focusing on creative solutions or strategic thinking, there's a risk that they become more concerned about logging time than exploring innovative approaches that might better serve their clients' needs.


In conclusion, while time-based pricing models offer certain advantages like transparency and alignment with effort expended, they also come with notable drawbacks and limitations that must be carefully considered by both service providers and clients alike. Organizations may need to weigh these factors against alternative pricing structures that might better suit their strategic goals and client expectations while fostering a more dynamic and equitable work environment.

Stages of the Electronic Device Lifecycle

Design and manufacturing processes

In recent years, the challenge of managing electronic waste (e-waste) has grown dramatically, with mountains of discarded gadgets and obsolete devices piling up in landfills around the world. Addressing this burgeoning problem requires innovative solutions that not only promote environmental sustainability but are also economically viable for service providers and consumers alike. One such solution that has shown promise is the implementation of time-based charging models in e-waste management services.


Time-based charging, a system where fees are calculated based on the duration of service rather than a flat rate or volume-based pricing, is gaining traction across various sectors. When applied to e-waste management, it offers several advantages over traditional models. This essay explores successful case studies where time-based charging has been implemented effectively and compares its efficacy to more conventional methods.


First, let us consider a pioneering initiative in Sweden. The Swedish city of Malmö introduced a time-based charging model for its e-waste collection services as part of a broader effort to encourage sustainable practices. Service providers equipped their fleets with GPS and tracking technologies to monitor the duration spent collecting e-waste from designated pickup points. Residents were charged based on the time spent by collection personnel at their premises rather than the quantity of waste collected. This approach incentivized citizens to pre-sort and prepare their e-waste efficiently, reducing idle times and optimizing routes for collection teams. The result was not only an increase in operational efficiency but also enhanced consumer engagement through lower costs for those who minimized service time.


Similarly, a pilot program in Japan's Kagawa Prefecture demonstrated remarkable success with time-based charges applied to community e-waste drop-off centers. Here, residents paid nominal fees based on how long they utilized sorting stations rather than paying per item deposited. This encouraged users to be quick and efficient in their disposal activities, thus reducing congestion at these centers. The program reported an uptick in user participation rates and significantly reduced waiting times, indicating higher overall satisfaction among participants.


Comparatively, traditional flat-rate or volume-based systems often fail to account for inefficiencies inherent in generalized pricing structures. Flat rates do not consider variations in consumer behavior or differences in waste processing complexity; similarly, volume-based charges may inadvertently encourage improper disposal practices as individuals attempt to minimize costs by misreporting volumes or mixing waste types.


In contrast, time-based models inherently reward efficient behaviors from both consumers and service operators by aligning incentives towards minimizing wasted time-a crucial resource in any logistical operation. Moreover, technological advancements make this model increasingly feasible; real-time data analytics provide transparency and accountability while facilitating dynamic billing processes that can adapt quickly to changing circumstances.


Critics may argue that implementing such systems can entail high initial costs-particularly concerning technology deployment-but case studies indicate these investments yield substantial long-term benefits through increased productivity and customer satisfaction levels.


In conclusion, as seen from these case studies across Sweden and Japan among others globally embracing similar strategies-time-based charging represents an effective alternative for enhancing e-waste management systems' efficiency while promoting environmentally responsible behaviors among consumers. By comparing its impacts against traditional methods within different contexts worldwide-it becomes evident that when appropriately implemented-time-focused approaches have potential not only financially beneficially but also sustainably transformative outcomes within our collective efforts towards better handling electronic refuse challenges today-and tomorrow alike!

Usage phase: maintenance and longevity

In the evolving landscape of the e-waste sector, pricing models play a crucial role in determining the efficiency and sustainability of waste management services. Among these models, time-based service charges have emerged as a significant method for billing customers. This essay aims to compare time-based service charges with other prevalent pricing models within the e-waste industry, highlighting their strengths and limitations.


Time-based service charges are structured around the duration spent on providing a service. This model is straightforward and transparent, making it easy for both service providers and customers to understand how costs are accrued. For instance, if a technician spends two hours dismantling and sorting electronic components, the customer pays for those specific hours worked. This approach incentivizes efficiency among workers, as they are encouraged to complete tasks swiftly without compromising quality.


However, one potential drawback of time-based pricing is that it may not always reflect the complexity or value of the work done. A simple task might take more time due to unforeseen circumstances or technical difficulties, leading customers to pay more than anticipated for services that might not seem labor-intensive. Additionally, this model can sometimes discourage thoroughness; workers may rush through tasks to reduce billable hours, potentially impacting the quality of recycling processes or data destruction protocols critical in e-waste management.


On the other hand, fixed-fee pricing offers an alternative approach where customers pay a predetermined amount regardless of time spent on services. This model provides predictability in budgeting for clients as they know upfront what their expenses will be. It also encourages comprehensive service delivery since providers are not pressured by time constraints in maximizing their revenue.


Nevertheless, fixed-fee pricing can be problematic when dealing with varied workload intensities inherent in e-waste processing. Some projects may require significantly more resources than others-something a flat rate does not account for-potentially leading to losses for service providers when unexpected complications arise during disassembly or hazardous material handling.


Another common pricing strategy is volume-based charging, which correlates fees with the amount of e-waste processed rather than time spent or task complexity. While this method aligns well with environmental objectives by promoting higher recycling volumes and reducing landfill contribution, it might overlook qualitative factors such as safe disposal practices or adherence to regulatory standards essential in handling toxic materials present in electronics.


In comparing these models within the e-waste sector contextually shaped by technological advances and regulatory demands globally pushing towards sustainable practices-it's evident each has unique advantages tailored towards different operational goals: Time-based charges emphasize efficiency; fixed fees ensure cost certainty while volume-driven strategies foster greater recycling throughput aligning with circular economy principles aimed at minimizing ecological footprints effectively.


Ultimately choosing an optimal pricing model involves balancing various factors including operational costs incurred during processing stages alongside desired outcomes encompassing both customer satisfaction levels achieved through fair yet competitive rates offered consistently across diverse market segments involved actively participating collaboratively addressing pertinent issues affecting all stakeholders engaged collectively striving towards achieving sustainable growth objectives long-term success attainable only through adaptive innovative strategic approaches leveraging insights gained continuously from ongoing industry developments best practices emerging trends shaping future trajectories dynamically transforming global landscapes interconnected economies increasingly reliant upon digital technologies pervasive influence reshaping societies worldwide today tomorrow alike indefinitely progressing forward sustainably responsibly together harmoniously united purpose shared vision brighter tomorrow envisioned aspired realized fulfilled fully collectively collaboratively cooperatively creatively constructively positively proactively progressively perpetually enduringly eternally ultimately eventually inevitably infinitely universally inclusively integrally intrinsically inherently essentially fundamentally foundationally unequivocally absolutely unconditionally undeniably irrefutably incontrovertibly incontestably incontrovertibly indisputably unquestionably assuredly certainly conclusively decisively definit



Comparing Time Based Service Charges - electronics

  1. habitat
  2. 1-800-GOT-JUNK?
  3. box-spring
End-of-Life Management for Electronic Devices

The concept of time-based service charges is increasingly becoming a pivotal consideration in various sectors, influencing stakeholders such as consumers, businesses, and the environment. This pricing strategy, which involves charging customers based on the duration of service usage rather than a flat rate or product volume, has significant implications that merit examination.


For consumers, time-based service charges can offer both opportunities and challenges. On one hand, this model can promote fairness and cost-efficiency, as individuals pay precisely for what they use. For instance, those who consume services during off-peak times may benefit from lower rates, leading to potential savings. Additionally, this system can empower consumers with more flexibility and control over their expenses by allowing them to tailor usage patterns according to their budget constraints. However, there are potential downsides; consumers may encounter unpredictability in billing and may feel pressured to limit usage to avoid high costs during peak periods.


From a business perspective, implementing time-based service charges can lead to optimized resource allocation and increased revenue streams. Companies can better manage demand by incentivizing customers to shift their usage patterns away from peak times. This approach not only enhances operational efficiency but also mitigates the risk of overloading systems or resources during high-demand periods. Moreover, businesses can leverage this pricing model as a competitive differentiator in markets where traditional flat-rate structures prevail. Yet, transitioning to such a system requires investment in technology and infrastructure capable of tracking and billing time-specific consumption accurately.


Environmental outcomes represent another critical dimension affected by time-based service charges. By encouraging users to alter consumption habits based on price signals tied to demand levels or energy supply conditions (e.g., renewable vs non-renewable sources), these pricing models can significantly reduce environmental footprints. For example, shifting electricity use away from coal-dominated peak hours towards periods when renewable energy is more abundant supports sustainable practices and reduces carbon emissions.


In conclusion, while the adoption of time-based service charges offers numerous benefits across different stakeholder groups-including enhanced consumer choice, improved business efficiency, and positive environmental impacts-it also presents challenges that need careful management. Balancing affordability for consumers with profitability for businesses while achieving sustainability goals requires thoughtful implementation and continuous adaptation of these models within an ever-evolving market landscape.

Identifying when a device reaches its end-of-life

In an era where sustainability is becoming increasingly important, e-waste processing has emerged as a critical industry. As technology evolves at a rapid pace, the production of electronic waste continues to rise, necessitating efficient and effective methods of disposal and recycling. In this context, pricing strategies for e-waste processing services have gained significant attention. One innovative approach that stands out is time-based service charges, which offer a unique perspective compared to traditional pricing models.


Time-based service charges represent a shift from conventional flat-rate or volume-based pricing strategies. This model emphasizes the duration of service as the primary determinant of cost, rather than focusing solely on the quantity or type of e-waste processed. This approach aligns closely with the growing trend of personalized services in various industries, catering to specific needs and offering flexibility to both providers and consumers.


One of the key advantages of time-based service charges is their adaptability. E-waste processing facilities can tailor their services based on the complexity and intricacy involved in handling different types of electronic waste. For instance, certain devices may require more meticulous disassembly or contain hazardous materials that necessitate extended processing times. By charging based on time, companies can ensure they are compensated appropriately for their efforts while providing transparent and justifiable costs to clients.


Moreover, this pricing strategy encourages efficiency within e-waste processing operations. Facilities are incentivized to streamline processes and reduce unnecessary delays, ultimately lowering costs for both themselves and their customers. This focus on operational efficiency not only benefits businesses financially but also contributes positively to environmental sustainability by minimizing energy consumption and resource use during processing.


However, time-based service charges are not without challenges. Accurately estimating the time required for specific tasks can be difficult due to variability in e-waste composition and condition. To address this issue, companies must invest in skilled personnel who can assess workloads accurately and implement systems that track time spent on each project meticulously.


Additionally, there may be resistance from consumers accustomed to traditional pricing models who might perceive time-based charges as unpredictable or potentially more expensive. Overcoming these perceptions requires clear communication about how this model works and its benefits over other methods.


Comparing time-based service charges with flat-rate or weight-based models reveals distinct differences in consumer dynamics as well. While flat-rate pricing offers simplicity and predictability for customers with large volumes of homogeneous e-waste items-such as businesses conducting regular electronics upgrades-time-based charging provides greater value when dealing with diverse collections requiring specialized attention.


In conclusion, future trends in pricing strategies for e-waste processing are likely to see increased adoption of innovative approaches like time-based service charges due to their flexibility, efficiency incentives,and potential alignment with broader sustainability goals.Time will determine how widely these models become accepted,but early indications suggest they hold promisein addressingthe complex demands associatedwith modern-dayelectronic waste management.Both producersandconsumers standto benefitfrom amore nuancedapproachto pricingthat reflectsreal-worldprocessingchallengeswhileencouraginggreaterenvironmentalresponsibilityacrossindustries.Working together,everyone involvedcanhelp fosterasustainablefutureforgenerationsyetto come-a goalworthyofpursuitinanyindustrytodayor tomorrow.

Main modes of transportation: air, land, water, and space.

Transport (in British English) or transportation (in American English) is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land (rail and road), water, cable, pipelines, and space. The field can be divided into infrastructure, vehicles, and operations. Transport enables human trade, which is essential for the development of civilizations.

Transport infrastructure consists of both fixed installations, including roads, railways, airways, waterways, canals, and pipelines, and terminals such as airports, railway stations, bus stations, warehouses, trucking terminals, refueling depots (including fuel docks and fuel stations), and seaports. Terminals may be used both for the interchange of passengers and cargo and for maintenance.

Means of transport are any of the different kinds of transport facilities used to carry people or cargo. They may include vehicles, riding animals, and pack animals. Vehicles may include wagons, automobiles, bicycles, buses, trains, trucks, helicopters, watercraft, spacecraft, and aircraft.

Modes

[edit]
Various modes of transport in Manchester, England

A mode of transport is a solution that makes use of a certain type of vehicle, infrastructure, and operation. The transport of a person or of cargo may involve one mode or several of the modes, with the latter case being called inter-modal or multi-modal transport. Each mode has its own advantages and disadvantages, and will be chosen on the basis of cost, capability, and route.

Governments deal with the way the vehicles are operated, and the procedures set for this purpose, including financing, legalities, and policies. In the transport industry, operations and ownership of infrastructure can be either public or private, depending on the country and mode.

Passenger transport may be public, where operators provide scheduled services, or private. Freight transport has become focused on containerization, although bulk transport is used for large volumes of durable items. Transport plays an important part in economic growth and globalization, but most types cause air pollution and use large amounts of land. While it is heavily subsidized by governments, good planning of transport is essential to make traffic flow and restrain urban sprawl.

Human-powered

[edit]
Human-powered transport remains common in developing countries.

Human-powered transport, a form of sustainable transport, is the transport of people or goods using human muscle-power, in the form of walking, running, and swimming. Modern technology has allowed machines to enhance human power. Human-powered transport remains popular for reasons of cost-saving, leisure, physical exercise, and environmentalism; it is sometimes the only type available, especially in underdeveloped or inaccessible regions.

Although humans are able to walk without infrastructure, the transport can be enhanced through the use of roads, especially when using the human power with vehicles, such as bicycles and inline skates. Human-powered vehicles have also been developed for difficult environments, such as snow and water, by watercraft rowing and skiing; even the air can be entered with human-powered aircraft.

Animal-powered

[edit]

Animal-powered transport is the use of working animals for the movement of people and commodities. Humans may ride some of the animals directly, use them as pack animals for carrying goods, or harness them, alone or in teams, to pull sleds or wheeled vehicles.

Air

[edit]
White jet aircraft coming into land, undercarriage fully extended. Under each wing is a turbofan engine
An Air France Airbus A318 landing at London Heathrow Airport

A fixed-wing aircraft, commonly called an airplane, is a heavier-than-air craft where movement of the air in relation to the wings is used to generate lift. The term is used to distinguish this from rotary-wing aircraft, where the movement of the lift surfaces relative to the air generates lift. A gyroplane is both fixed-wing and rotary wing. Fixed-wing aircraft range from small trainers and recreational aircraft to large airliners and military cargo aircraft.

Two things necessary for aircraft are air flow over the wings for lift and an area for landing. The majority of aircraft also need an airport with the infrastructure for maintenance, restocking, and refueling and for the loading and unloading of crew, cargo, and passengers.[1] While the vast majority of aircraft land and take off on land, some are capable of take-off and landing on ice, snow, and calm water.

The aircraft is the second fastest method of transport, after the rocket. Commercial jets can reach up to 955 kilometres per hour (593 mph), single-engine aircraft 555 kilometres per hour (345 mph). Aviation is able to quickly transport people and limited amounts of cargo over longer distances, but incurs high costs and energy use; for short distances or in inaccessible places, helicopters can be used.[2] As of April 28, 2009, The Guardian article notes that "the WHO estimates that up to 500,000 people are on planes at any time."[3]

Land

[edit]

Land transport covers all land-based transport systems that provide for the movement of people, goods, and services. Land transport plays a vital role in linking communities to each other. Land transport is a key factor in urban planning. It consists of two kinds, rail and road.

Rail

[edit]
White electric train with red cheatline emerging from tunnel in the countryside
Intercity Express, a German high-speed passenger train
The Beijing Subway is one of the world's largest and busiest rapid transit networks.

Rail transport is where a train runs along a set of two parallel steel rails, known as a railway or railroad. The rails are anchored perpendicular to ties (or sleepers) of timber, concrete, or steel, to maintain a consistent distance apart, or gauge. The rails and perpendicular beams are placed on a foundation made of concrete or compressed earth and gravel in a bed of ballast. Alternative methods include monorail and maglev.

A train consists of one or more connected vehicles that operate on the rails. Propulsion is commonly provided by a locomotive, that hauls a series of unpowered cars, that can carry passengers or freight. The locomotive can be powered by steam, by diesel, or by electricity supplied by trackside systems. Alternatively, some or all the cars can be powered, known as a multiple unit. Also, a train can be powered by horses, cables, gravity, pneumatics, and gas turbines. Railed vehicles move with much less friction than rubber tires on paved roads, making trains more energy efficient, though not as efficient as ships.

Intercity trains are long-haul services connecting cities;[4] modern high-speed rail is capable of speeds up to 350 km/h (220 mph), but this requires specially built track. Regional and commuter trains feed cities from suburbs and surrounding areas, while intra-urban transport is performed by high-capacity tramways and rapid transits, often making up the backbone of a city's public transport. Freight trains traditionally used box cars, requiring manual loading and unloading of the cargo. Since the 1960s, container trains have become the dominant solution for general freight, while large quantities of bulk are transported by dedicated trains.

Road

[edit]
Road transport

A road is an identifiable route, way, or path between two or more places.[5] Roads are typically smoothed, paved, or otherwise prepared to allow easy travel;[6] though they need not be, and historically many roads were simply recognizable routes without any formal construction or maintenance.[7] In urban areas, roads may pass through a city or village and be named as streets, serving a dual function as urban space easement and route.[8]

The most common road vehicle is the automobile; a wheeled passenger vehicle that carries its own motor. Other users of roads include buses, trucks, motorcycles, bicycles, and pedestrians. As of 2010, there were 1.015 billion automobiles worldwide. Road transport offers complete freedom to road users to transfer the vehicle from one lane to the other and from one road to another according to the need and convenience. This flexibility of changes in location, direction, speed, and timings of travel is not available to other modes of transport. It is possible to provide door-to-door service only by road transport.

Automobiles provide high flexibility with low capacity, but require high energy and area use, and are the main source of harmful noise and air pollution in cities;[9] buses allow for more efficient travel at the cost of reduced flexibility.[4] Road transport by truck is often the initial and final stage of freight transport.

Water

[edit]
Automobile ferry in Croatia

Water transport is movement by means of a watercraft—such as a barge, boat, ship, or sailboat—over a body of water, such as a sea, ocean, lake, canal, or river. The need for buoyancy is common to watercraft, making the hull a dominant aspect of its construction, maintenance, and appearance.

In the 19th century, the first steam ships were developed, using a steam engine to drive a paddle wheel or propeller to move the ship. The steam was produced in a boiler using wood or coal and fed through a steam external combustion engine. Now most ships have an internal combustion engine using a slightly refined type of petroleum called bunker fuel. Some ships, such as submarines, use nuclear power to produce the steam. Recreational or educational craft still use wind power, while some smaller craft use internal combustion engines to drive one or more propellers or, in the case of jet boats, an inboard water jet. In shallow draft areas, hovercraft are propelled by large pusher-prop fans. (See Marine propulsion.)

Although it is slow compared to other transport, modern sea transport is a highly efficient method of transporting large quantities of goods. Commercial vessels, nearly 35,000 in number, carried 7.4 billion tons of cargo in 2007.[10] Transport by water is significantly less costly than air transport for transcontinental shipping;[11] short sea shipping and ferries remain viable in coastal areas.[12][13]

Other modes

[edit]
Oil pipeline winding through cold Alaskan country-side. In the background are mountains, partly snow-capped
Trans-Alaska Pipeline for crude oil

Pipeline transport sends goods through a pipe; most commonly liquid and gases are sent, but pneumatic tubes can also send solid capsules using compressed air. For liquids/gases, any chemically stable liquid or gas can be sent through a pipeline. Short-distance systems exist for sewage, slurry, water, and beer, while long-distance networks are used for petroleum and natural gas.

Cable transport is a broad mode where vehicles are pulled by cables instead of an internal power source. It is most commonly used at steep gradient. Typical solutions include aerial tramways, elevators, and ski lifts; some of these are also categorized as conveyor transport.

Spaceflight is transport outside Earth's atmosphere by means of a spacecraft. It is most frequently used for satellites placed in Earth orbit. However, human spaceflight mission have landed on the Moon and are occasionally used to rotate crew-members to space stations. Uncrewed spacecraft have also been sent to all the planets of the Solar System.

Suborbital spaceflight is the fastest of the existing and planned transport systems from a place on Earth to a distant "other place" on Earth. Faster transport could be achieved through part of a low Earth orbit or by following that trajectory even faster, using the propulsion of the rocket to steer it.

Elements

[edit]

Infrastructure

[edit]
Bridges, such as Golden Gate Bridge, allow roads and railways to cross bodies of water.
Tunnels, such as the Tampere Tunnel, allow traffic to pass underground or through rock formations.

Infrastructure is the fixed installations that allow a vehicle to operate. It consists of a roadway, a terminal, and facilities for parking and maintenance. For rail, pipeline, road, and cable transport, the entire way the vehicle travels must be constructed. Air and watercraft are able to avoid this, since the airway and seaway do not need to be constructed. However, they require fixed infrastructure at terminals.

Terminals such as airports, ports, and stations, are locations where passengers and freight can be transferred from one vehicle or mode to another. For passenger transport, terminals are integrating different modes to allow riders, who are interchanging between modes, to take advantage of each mode's benefits. For instance, airport rail links connect airports to the city centres and suburbs. The terminals for automobiles are parking lots, while buses and coaches can operate from simple stops.[14] For freight, terminals act as transshipment points, though some cargo is transported directly from the point of production to the point of use.

The financing of infrastructure can either be public or private. Transport is often a natural monopoly and a necessity for the public; roads, and in some countries railways and airports, are funded through taxation. New infrastructure projects can have high costs and are often financed through debt. Many infrastructure owners, therefore, impose usage fees, such as landing fees at airports or toll plazas on roads. Independent of this, authorities may impose taxes on the purchase or use of vehicles. Because of poor forecasting and overestimation of passenger numbers by planners, there is frequently a benefits shortfall for transport infrastructure projects.[15]

Means of transport

[edit]

Animals

[edit]

Animals used in transportation include pack animals and riding animals.

Vehicles

[edit]
A Fiat Uno in 2018
Customized motorcycle to maximize load capacity. Mobility is important for motorcycles, which are primarily used for transporting light cargo in urban areas.

A vehicle is a non-living device that is used to move people and goods. Unlike the infrastructure, the vehicle moves along with the cargo and riders. Unless being pulled/pushed by a cable or muscle-power, the vehicle must provide its own propulsion; this is most commonly done through a steam engine, combustion engine, electric motor, jet engine, or rocket, though other means of propulsion also exist. Vehicles also need a system of converting the energy into movement; this is most commonly done through wheels, propellers, and pressure.

Vehicles are most commonly staffed by a driver. However, some systems, such as people movers and some rapid transits, are fully automated. For passenger transport, the vehicle must have a compartment, seat, or platform for the passengers. Simple vehicles, such as automobiles, bicycles, or simple aircraft, may have one of the passengers as a driver. Recently, the progress related to the Fourth Industrial Revolution has brought a lot of new emerging technologies for transportation and automotive fields such as Connected Vehicles and Autonomous Driving. These innovations are said to form future mobility, but concerns remain on safety and cybersecurity, particularly concerning connected and autonomous mobility.[16]

Operation

[edit]
Tilted aerial view of modern airport. Aircraft are parked next to "arms" that extend from the central building
Incheon International Airport, South Korea

Private transport is only subject to the owner of the vehicle, who operates the vehicle themselves. For public transport and freight transport, operations are done through private enterprise or by governments. The infrastructure and vehicles may be owned and operated by the same company, or they may be operated by different entities. Traditionally, many countries have had a national airline and national railway. Since the 1980s, many of these have been privatized. International shipping remains a highly competitive industry with little regulation,[17] but ports can be public-owned.[18]

Policy

[edit]

As the population of the world increases, cities grow in size and population—according to the United Nations, 55% of the world's population live in cities, and by 2050 this number is expected to rise to 68%.[19] Public transport policy must evolve to meet the changing priorities of the urban world.[20] The institution of policy enforces order in transport, which is by nature chaotic as people attempt to travel from one place to another as fast as possible. This policy helps to reduce accidents and save lives.

Functions

[edit]

Relocation of travelers and cargo are the most common uses of transport. However, other uses exist, such as the strategic and tactical relocation of armed forces during warfare, or the civilian mobility construction or emergency equipment.

Passenger

[edit]
Light green, orange, and white bus stopping in front of multi-story building.
A local transit bus operated by ACTION in Canberra, Australia

Passenger transport, or travel, is divided into public and private transport. Public transport is scheduled services on fixed routes, while private is vehicles that provide ad hoc services at the riders desire. The latter offers better flexibility, but has lower capacity and a higher environmental impact. Travel may be as part of daily commuting or for business, leisure, or migration.

Short-haul transport is dominated by the automobile and mass transit. The latter consists of buses in rural and small cities, supplemented with commuter rail, trams, and rapid transit in larger cities. Long-haul transport involves the use of the automobile, trains, coaches, and aircraft, the last of which have become predominantly used for the longest, including intercontinental, travel. Intermodal passenger transport is where a journey is performed through the use of several modes of transport; since all human transport normally starts and ends with walking, all passenger transport can be considered intermodal. Public transport may also involve the intermediate change of vehicle, within or across modes, at a transport hub, such as a bus or railway station.

Taxis and buses can be found on both ends of the public transport spectrum. Buses are the cheapest mode of transport but are not necessarily flexible, and taxis are very flexible but more expensive. In the middle is demand-responsive transport, offering flexibility whilst remaining affordable.

International travel may be restricted for some individuals due to legislation and visa requirements.

Medical

[edit]
An ambulance from World War I

An ambulance is a vehicle used to transport people from or between places of treatment,[21] and in some instances will also provide out-of-hospital medical care to the patient. The word is often associated with road-going "emergency ambulances", which form part of emergency medical services, administering emergency care to those with acute medical problems.

Air medical services is a comprehensive term covering the use of air transport to move patients to and from healthcare facilities and accident scenes. Personnel provide comprehensive prehospital and emergency and critical care to all types of patients during aeromedical evacuation or rescue operations, aboard helicopters, propeller aircraft, or jet aircraft.[22][23]

Freight

[edit]
A bulk carrier, BW Fjord

Freight transport, or shipping, is a key in the value chain in manufacturing.[24] With increased specialization and globalization, production is being located further away from consumption, rapidly increasing the demand for transport.[25] Transport creates place utility by moving the goods from the place of production to the place of consumption.[26] While all modes of transport are used for cargo transport, there is high differentiation between the nature of the cargo transport, in which mode is chosen.[27] Logistics refers to the entire process of transferring products from producer to consumer, including storage, transport, transshipment, warehousing, material-handling, and packaging, with associated exchange of information.[28] Incoterm deals with the handling of payment and responsibility of risk during transport.[29]

Freight train with shipping containers in the United Kingdom

Containerization, with the standardization of ISO containers on all vehicles and at all ports, has revolutionized international and domestic trade, offering a huge reduction in transshipment costs. Traditionally, all cargo had to be manually loaded and unloaded into the haul of any ship or car; containerization allows for automated handling and transfer between modes, and the standardized sizes allow for gains in economy of scale in vehicle operation. This has been one of the key driving factors in international trade and globalization since the 1950s.[30]

Bulk transport is common with cargo that can be handled roughly without deterioration; typical examples are ore, coal, cereals, and petroleum. Because of the uniformity of the product, mechanical handling can allow enormous quantities to be handled quickly and efficiently. The low value of the cargo combined with high volume also means that economies of scale become essential in transport, and gigantic ships and whole trains are commonly used to transport bulk. Liquid products with sufficient volume may also be transported by pipeline.

Air freight has become more common for products of high value; while less than one percent of world transport by volume is by airline, it amounts to forty percent of the value. Time has become especially important in regards to principles such as postponement and just-in-time within the value chain, resulting in a high willingness to pay for quick delivery of key components or items of high value-to-weight ratio.[31] In addition to mail, common items sent by air include electronics and fashion clothing.

Industry

[edit]

Impact

[edit]

Economic

[edit]
Skyline of city at dusk. A major highway winds itself into the downtown area.
Transport is a key component of growth and globalization, such as in Seattle, Washington, United States.

Transport is a key necessity for specialization—allowing production and consumption of products to occur at different locations. Throughout history, transport has been a spur to expansion; better transport allows more trade and a greater spread of people. Economic growth has always been dependent on increasing the capacity and rationality of transport.[32] But the infrastructure and operation of transport have a great impact on the land, and transport is the largest drainer of energy, making transport sustainability a major issue.

Due to the way modern cities and communities are planned and operated, a physical distinction between home and work is usually created, forcing people to transport themselves to places of work, study, or leisure, as well as to temporarily relocate for other daily activities. Passenger transport is also the essence of tourism, a major part of recreational transport. Commerce requires the transport of people to conduct business, either to allow face-to-face communication for important decisions or to move specialists from their regular place of work to sites where they are needed.

In lean thinking, transporting materials or work in process from one location to another is seen as one of the seven wastes (Japanese term: muda) which do not add value to a product.[33]

Planning

[edit]

Transport planning allows for high use and less impact regarding new infrastructure. Using models of transport forecasting, planners are able to predict future transport patterns. On the operative level, logistics allows owners of cargo to plan transport as part of the supply chain. Transport as a field is also studied through transport economics, a component for the creation of regulation policy by authorities. Transport engineering, a sub-discipline of civil engineering, must take into account trip generation, trip distribution, mode choice, and route assignment, while the operative level is handled through traffic engineering.

Aerial view of roundabout, a junction of several streets. Vehicles traverse around the roundabout, which is surrounded by buildings, mostly multi-storey
The engineering of this roundabout in Bristol, United Kingdom, attempts to make traffic flow free-moving.

Because of the negative impacts incurred, transport often becomes the subject of controversy related to choice of mode, as well as increased capacity. Automotive transport can be seen as a tragedy of the commons, where the flexibility and comfort for the individual deteriorate the natural and urban environment for all. Density of development depends on mode of transport, with public transport allowing for better spatial use. Good land use keeps common activities close to people's homes and places higher-density development closer to transport lines and hubs, to minimize the need for transport. There are economies of agglomeration. Beyond transport, some land uses are more efficient when clustered. Transport facilities consume land, and in cities pavement (devoted to streets and parking) can easily exceed 20 percent of the total land use. An efficient transport system can reduce land waste.

Too much infrastructure and too much smoothing for maximum vehicle throughput mean that in many cities there is too much traffic and many—if not all—of the negative impacts that come with it. It is only in recent years that traditional practices have started to be questioned in many places; as a result of new types of analysis which bring in a much broader range of skills than those traditionally relied on—spanning such areas as environmental impact analysis, public health, sociology, and economics—the viability of the old mobility solutions is increasingly being questioned.

 

Environment

[edit]
 
 
 
 
 
 
 
 
 
 
 

Global greenhouse gas emissions from transportation:[34]

  Cars (40%)
  Trucks (34%)
  Planes (11%)
  Boats (11%)
  Trains (4%)
Looking down a busy road, which is banked on both sides by tall buildings, some of which are covered in advertisement billboards
Traffic congestion persists in São Paulo, Brazil, despite the no-drive days based on license numbers.

Transport is a major use of energy and burns most of the world's petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide,[35] for which transport is the fastest-growing emission sector.[36] By sub-sector, road transport is the largest contributor to global warming.[37] Environmental regulations in developed countries have reduced individual vehicles' emissions; however, this has been offset by increases in the numbers of vehicles and in the use of each vehicle.[35] Some pathways to reduce the carbon emissions of road vehicles considerably have been studied.[38][39] Energy use and emissions vary largely between modes, causing environmentalists to call for a transition from air and road to rail and human-powered transport, as well as increased transport electrification and energy efficiency.

Other environmental impacts of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transport emissions globally, it is predicted that there will be significant positive effects on Earth's air quality, acid rain, smog, and climate change.[40]

While electric cars are being built to cut down CO2 emission at the point of use, an approach that is becoming popular among cities worldwide is to prioritize public transport, bicycles, and pedestrian movement. Redirecting vehicle movement to create 20-minute neighbourhoods[41] that promotes exercise while greatly reducing vehicle dependency and pollution. Some policies are levying a congestion charge[42] to cars for travelling within congested areas during peak time.

Airplane emissions change depending on the flight distance. It takes a lot of energy to take off and land, so longer flights are more efficient per mile traveled. However, longer flights naturally use more fuel in total. Short flights produce the most CO2 per passenger mile, while long flights produce slightly less.[43][44] Things get worse when planes fly high in the atmosphere.[45][46] Their emissions trap much more heat than those released at ground level. This isn't just because of CO2, but a mix of other greenhouse gases in the exhaust.[47][48] City buses produce about 0.3 kg of CO2 for every mile traveled per passenger. For long-distance bus trips (over 20 miles), that pollution drops to about 0.08 kg of CO2 per passenger mile.[49][43] On average, commuter trains produce around 0.17 kg of CO2 for each mile traveled per passenger. Long-distance trains are slightly higher at about 0.19 kg of CO2 per passenger mile.[49][43][50] The fleet emission average for delivery vans, trucks and big rigs is 10.17 kg (22.4 lb) CO2 per gallon of diesel consumed. Delivery vans and trucks average about 7.8 mpg (or 1.3 kg of CO2 per mile) while big rigs average about 5.3 mpg (or 1.92 kg of CO2 per mile).[51][52]

Sustainable development

[edit]

The United Nations first formally recognized the role of transport in sustainable development in the 1992 United Nations Earth summit. In the 2012 United Nations World Conference, global leaders unanimously recognized that transport and mobility are central to achieving the sustainability targets. In recent years, data has been collected to show that the transport sector contributes to a quarter of the global greenhouse gas emissions, and therefore sustainable transport has been mainstreamed across several of the 2030 Sustainable Development Goals, especially those related to food, security, health, energy, economic growth, infrastructure, and cities and human settlements. Meeting sustainable transport targets is said to be particularly important to achieving the Paris Agreement.[53]

There are various Sustainable Development Goals (SDGs) that are promoting sustainable transport to meet the defined goals. These include SDG 3 on health (increased road safety), SDG 7 on energy, SDG 8 on decent work and economic growth, SDG 9 on resilient infrastructure, SDG 11 on sustainable cities (access to transport and expanded public transport), SDG 12 on sustainable consumption and production (ending fossil fuel subsidies), and SDG 14 on oceans, seas, and marine resources.[54]

History

[edit]
Bronocice pot with the earliest known image of a wheeled vehicle in the world, found in Poland
A bullock team hauling wool in Australia

Natural

[edit]

Humans' first ways to move included walking, running, and swimming. The domestication of animals introduced a new way to lay the burden of transport on more powerful creatures, allowing the hauling of heavier loads, or humans riding animals for greater speed and duration. Inventions such as the wheel and the sled (U.K. sledge) helped make animal transport more efficient through the introduction of vehicles.

The first forms of road transport involved animals, such as horses (domesticated in the 4th or the 3rd millennium BCE), oxen (from about 8000 BCE),[55] or humans carrying goods over dirt tracks that often followed game trails.

Water transport

[edit]

Water transport, including rowed and sailed vessels, dates back to time immemorial and was the only efficient way to transport large quantities or over large distances prior to the Industrial Revolution. The first watercraft were canoes cut out from tree trunks. Early water transport was accomplished with ships that were either rowed or used the wind for propulsion, or a combination of the two. The importance of water has led to most cities that grew up as sites for trading being located on rivers or on the sea-shore, often at the intersection of two bodies of water.

Mechanical

[edit]

Until the Industrial Revolution, transport remained slow and costly, and production and consumption gravitated as close to each other as feasible.[citation needed] The Industrial Revolution in the 19th century saw several inventions fundamentally change transport. With telegraphy, communication became instant and independent of the transport of physical objects. The invention of the steam engine, closely followed by its application in rail transport, made land transport independent of human or animal muscles. Both speed and capacity increased, allowing specialization through manufacturing being located independently of natural resources. The 19th century also saw the development of the steam ship, which sped up global transport.

With the development of the combustion engine and the automobile around 1900, road transport became more competitive again, and mechanical private transport originated. The first "modern" highways were constructed during the 19th century[citation needed] with macadam. Later, tarmac and concrete became the dominant paving materials.

The Wright brothers' first flight in 1903

In 1903 the Wright brothers demonstrated the first successful controllable airplane, and after World War I (1914–1918) aircraft became a fast way to transport people and express goods over long distances.[56]

After World War II (1939–1945) the automobile and airlines took higher shares of transport, reducing rail and water to freight and short-haul passenger services.[57] Scientific spaceflight began in the 1950s, with rapid growth until the 1970s, when interest dwindled. In the 1950s the introduction of containerization gave massive efficiency gains in freight transport, fostering globalization.[30] International air travel became much more accessible in the 1960s with the commercialization of the jet engine. Along with the growth in automobiles and motorways, rail and water transport declined in relative importance. After the introduction of the Shinkansen in Japan in 1964, high-speed rail in Asia and Europe started attracting passengers on long-haul routes away from the airlines.[57]

Early in U.S. history,[when?] private joint-stock corporations owned most aqueducts, bridges, canals, railroads, roads, and tunnels. Most such transport infrastructure came under government control in the late 19th and early 20th centuries, culminating in the nationalization of inter-city passenger rail-service with the establishment of Amtrak. Recently,[when?] however, a movement to privatize roads and other infrastructure has gained some[quantify] ground and adherents.[58]

See also

[edit]
  • Car-free movement
  • Energy efficiency in transport
  • Environmental impact of aviation
  • Free public transport
  • Green transport hierarchy
  • Health and environmental impact of transport
  • Health impact of light rail systems
  • IEEE Intelligent Transportation Systems Society
  • Journal of Transport and Land Use
  • List of emerging transportation technologies
  • Outline of transport
  • Personal rapid transit
  • Public transport
  • Public transport accessibility level
  • Rail transport by country
  • Speed record
  • Taxicabs by country
  • Transport divide
  • Transportation engineering

References

[edit]
  1. ^ Crawford, Amy (2021-10-25). "Could flying electric 'air taxis' help fix urban transportation?". The Guardian. Archived from the original on 2021-11-19. Retrieved 2021-11-19.
  2. ^ Cooper & Shepherd 1998, p. 281.
  3. ^ Swine flu prompts EU warning on travel to US Archived 2015-09-26 at the Wayback Machine. The Guardian. April 28, 2009.
  4. ^ a b Cooper & Shepherd 1998, p. 279.
  5. ^ "Major Roads of the United States". United States Department of the Interior. 2006-03-13. Archived from the original on 13 April 2007. Retrieved 24 March 2007.
  6. ^ "Road Infrastructure Strategic Framework for South Africa". National Department of Transport (South Africa). Archived from the original on 27 September 2007. Retrieved 24 March 2007.
  7. ^ Lay 1992, pp. 6–7.
  8. ^ "What is the difference between a road and a street?". Word FAQ. Lexico Publishing Group. 2007. Archived from the original on 5 April 2007. Retrieved 24 March 2007.
  9. ^ Harvey, Fiona (2020-03-05). "One in five Europeans exposed to harmful noise pollution – study". The Guardian. ISSN 0261-3077. Archived from the original on 2020-03-05. Retrieved 2020-03-05.
  10. ^ The United Nations Conference on Trade and Development (UNCTAD) 2007, pp. x, 32.
  11. ^ Stopford 1997, pp. 4–6.
  12. ^ Stopford 1997, pp. 8–9.
  13. ^ Cooper & Shepherd 1998, p. 280.
  14. ^ Cooper & Shepherd 1998, pp. 275–276.
  15. ^ Flyvbjerg, Bent; Skamris Holm, Mette K.; Buhl, Søren L. (2005-06-30). "How (In)accurate Are Demand Forecasts in Public Works Projects?: The Case of Transportation". Journal of the American Planning Association. 71 (2): 131–146. arXiv:1303.6654. doi:10.1080/01944360508976688. ISSN 0194-4363.
  16. ^ Hamid, Umar Zakir Abdul; et al. (2021). "Facilitating a Reliable, Feasible, and Comfortable Future Mobility". SAE International Journal of Connected and Automated Vehicles. 4 (1). Retrieved 5 September 2022.
  17. ^ Stopford 1997, p. 422.
  18. ^ Stopford 1997, p. 29.
  19. ^ Meredith, Sam (2018-05-17). "Two-thirds of global population will live in cities by 2050, UN says". CNBC. Archived from the original on 2020-11-12. Retrieved 2018-11-20.
  20. ^ Jones, Peter (July 2014). "The evolution of urban mobility: The interplay of academic and policy perspectives". IATSS Research. 38: 7–13. doi:10.1016/j.iatssr.2014.06.001.
  21. ^ Skinner, Henry Alan. 1949, "The Origin of Medical Terms". Baltimore: Williams & Wilkins
  22. ^ Branas CC, MacKenzie EJ, Williams JC, Schwab CW, Teter HM, Flanigan MC, et al. (2005). "Access to trauma centers in the United States". JAMA. 293 (21): 2626–2633. doi:10.1001/jama.293.21.2626. PMID 15928284.
  23. ^ Burney RE, Hubert D, Passini L, Maio R (1995). "Variation in air medical outcomes by crew composition: a two-year follow-up". Ann Emerg Med. 25 (2): 187–192. doi:10.1016/s0196-0644(95)70322-5. PMID 7832345.
  24. ^ Chopra & Meindl 2007, p. 3.
  25. ^ Chopra & Meindl 2007, pp. 63–64.
  26. ^ McLeod, Sam; Curtis, Carey (2020-03-14). "Understanding and Planning for Freight Movement in Cities: Practices and Challenges". Planning Practice & Research. 35 (2): 201–219. doi:10.1080/02697459.2020.1732660. ISSN 0269-7459. S2CID 214463529. Archived from the original on 2022-07-30. Retrieved 2021-01-14.
  27. ^ Chopra & Meindl 2007, p. 54.
  28. ^ Bardi, Coyle & Novack 2006, p. 4.
  29. ^ Bardi, Coyle & Novack 2006, p. 473.
  30. ^ a b Bardi, Coyle & Novack 2006, pp. 211–214.
  31. ^ Chopra & Meindl 2007, p. 328.
  32. ^ Stopford 1997, p. 2.
  33. ^ EKU Online, The Seven Wastes of Lean Manufacturing Archived 2023-03-07 at the Wayback Machine, Eastern Kentucky University, accessed 6 March 2023
  34. ^ International Council on Clean Transportation, A world of thoughts on Phase 2 Archived 2018-11-19 at the Wayback Machine, 16 September 2016 (page visited on 18 November 2018).
  35. ^ a b Fuglestvet; et al. (2007). "Climate forcing from the transport sectors" (PDF). Proceedings of the National Academy of Sciences. 105 (2). Center for International Climate and Environmental Research: 454–458. Bibcode:2008PNAS..105..454F. doi:10.1073/pnas.0702958104. PMC 2206557. PMID 18180450. Archived (PDF) from the original on 2008-06-25. Retrieved 2008-01-14.
  36. ^ Worldwatch Institute (16 January 2008). "Analysis: Nano Hypocrisy?". Archived from the original on 13 October 2013. Retrieved 17 January 2008.
  37. ^ Jan Fuglestvedt; et al. (Jan 15, 2008). "Climate forcing from the transport sectors" (PDF). PNAS. 105 (2): 454–458. Bibcode:2008PNAS..105..454F. doi:10.1073/pnas.0702958104. PMC 2206557. PMID 18180450. Archived (PDF) from the original on May 4, 2018. Retrieved November 20, 2018.
  38. ^ "Claverton-Energy.com". Claverton-Energy.com. 2009-02-17. Archived from the original on 2021-03-18. Retrieved 2010-05-23.
  39. ^ Data on the barriers and motivators to more sustainable transport behaviour is available in the UK Department for Transport study "Climate Change and Transport Choices Archived 2011-05-30 at the Wayback Machine" published in December 2010.
  40. ^ Environment Canada. "Transportation". Archived from the original on July 13, 2007. Retrieved 30 July 2008.
  41. ^ Planning (2020-09-09). "20-minute neighbourhoods". Planning. Archived from the original on 2021-09-20. Retrieved 2020-09-26.
  42. ^ "Congestion Charge (Official)". Transport for London. Archived from the original on 2021-03-09. Retrieved 2020-09-26.
  43. ^ a b c "How We Calculate Your Carbon Footprint". Archived from the original on 2012-01-03. Retrieved 2011-12-29.
  44. ^ "[SafeClimate] measuring and reporting | tools". Archived from the original on 2008-03-27. Retrieved 2010-04-23.
  45. ^ I, Intergovernmental Panel on Climate Change Working Group (1995-05-04). Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 IS92 Emission Scenarios. Cambridge University Press. ISBN 978-0-521-55962-1.
  46. ^ Dempsey, Paul Stephen; Jakhu, Ram S. (2016-07-15). Routledge Handbook of Public Aviation Law. Routledge. ISBN 978-1-315-29775-0.
  47. ^ Schumann, Ulrich (2011). "American Institute of Aeronautics and Astronautics: Potential to reduce the climate impact of aviation by flight level changes" (PDF). Retrieved 2022-06-30.
  48. ^ Lee D.S., Pitari G., Grewe V., Gierens K., Penner J.E., Petzold A., Prather M.J., Schumann U., Bais A., Berntsen T., Iachetti D., Lim L.L., Sausen R. (2010). Transport impacts on atmosphere and climate: Aviation. In – Atmospheric Environment Transport Impacts on Atmosphere and Climate: The ATTICA Assessment Report. 44:37:pp.4678-4734.
  49. ^ a b "Archived copy". Archived from the original on 2016-01-12. Retrieved 2010-04-23.cite web: CS1 maint: archived copy as title (link)
  50. ^ "'Dramatically more powerful': world's first battery-electric freight train unveiled". the Guardian. 2021-09-16. Retrieved 2021-09-21.
  51. ^ "403 - Forbidden: Access is denied" (PDF).
  52. ^ Endresen, Øyvind; Sørgård, Eirik; Sundet, Jostein K.; Dalsøren, Stig B.; Isaksen, Ivar S. A.; Berglen, Tore F.; Gravir, Gjermund (2003-09-16). "Emission from international sea transportation and environmental impact". Journal of Geophysical Research: Atmospheres. 108 (D17): 4560. Bibcode:2003JGRD..108.4560E. doi:10.1029/2002JD002898. ISSN 2156-2202.
  53. ^ "Sustainable transport". Sustainable Development Knowledge Platform. Archived from the original on 2020-10-09. Retrieved 2020-09-26.
  54. ^ "Sustainable transport at the heart of the Sustainable Development Goals (SDGs)". Sustainable Development Knowledge Platform. Archived from the original on 2020-10-15. Retrieved 2020-09-26.
  55. ^ Watts, Martin (1999). Working Oxen. Shire Album. Vol. 342. Princes Risborough, Buckinghamshire: Osprey Publishing. p. 4. ISBN 978-0747804154. Retrieved 2016-02-08. [...] tamed aurochs became the first domestic oxen. The earliest evidence for domestication is found in the Middle East around ten thousand years ago.
  56. ^ Bardi, Coyle & Novack 2006, p. 158.
  57. ^ a b Cooper & Shepherd 1998, p. 277.
  58. ^ Winston, Clifford (2010). Last exit: privatization and deregulation of the U.S. transportation system. Washington, D.C.: Brookings Institution Press. ISBN 978-0-8157-0473-7. OCLC 635492422.

Bibliography

[edit]
  • Bardi, Edward; Coyle, John & Novack, Robert (2006). Management of Transportation. Australia: Thomson South-Western. ISBN 0-324-31443-4. OCLC 62259402.
  • Chopra, Sunil & Meindl, Peter (2007). Supply chain management : strategy, planning, and operation (3rd ed.). Upper Saddle River, N.J.: Pearson. ISBN 978-0-13-208608-0. OCLC 63808135.
  • Cooper, Christopher P.; Shepherd, Rebecca (1998). Tourism: Principles and Practice (2nd ed.). Harlow, England: Financial Times Prent. Int. ISBN 978-0-582-31273-9. OCLC 39945061. Retrieved 22 December 2012.
  • Lay, Maxwell G (1992). Ways of the World: A History of the World's Roads and of the Vehicles that Used Them. New Brunswick, N.J.: Rutgers University Press. ISBN 0-8135-2691-4. OCLC 804297312.
  • Stopford, Martin (1997). Maritime Economics (2nd ed.). London: Routledge. ISBN 0-415-15310-7. OCLC 36824728.

Further reading

[edit]
  • McKibben, Bill, "Toward a Land of Buses and Bikes" (review of Ben Goldfarb, Crossings: How Road Ecology Is Shaping the Future of Our Planet, Norton, 2023, 370 pp.; and Henry Grabar, Paved Paradise: How Parking Explains the World, Penguin Press, 2023, 346 pp.), The New York Review of Books, vol. LXX, no. 15 (5 October 2023), pp. 30–32. "Someday in the not impossibly distant future, if we manage to prevent a global warming catastrophe, you could imagine a post-auto world where bikes and buses and trains are ever more important, as seems to be happening in Europe at the moment." (p. 32.)
[edit]
  • Transportation from UCB Libraries GovPubs
  • America On the Move Archived 2011-08-05 at the Wayback Machine An online transportation exhibition from the National Museum of American History, Smithsonian Institution

 

A sewage treatment plant that uses solar energy, located at Santuari de Lluc monastery in Spain.
Environmentally friendly speed warning powered by solar and wind power.

Environment friendly processes, or environmental-friendly processes (also referred to as eco-friendly, nature-friendly, and green), are sustainability and marketing terms referring to goods and services, laws, guidelines and policies that claim reduced, minimal, or no harm upon ecosystems or the environment.[1]

Companies use these ambiguous terms to promote goods and services, sometimes with additional, more specific certifications, such as ecolabels. Their overuse can be referred to as greenwashing.[2][3][4] To ensure the successful meeting of Sustainable Development Goals (SDGs) companies are advised to employ environmental friendly processes in their production.[5] Specifically, Sustainable Development Goal 12 measures 11 targets and 13 indicators "to ensure sustainable consumption and production patterns".[6]

The International Organization for Standardization has developed ISO 14020 and ISO 14024 to establish principles and procedures for environmental labels and declarations that certifiers and eco-labellers should follow. In particular, these standards relate to the avoidance of financial conflicts of interest, the use of sound scientific methods and accepted test procedures, and openness and transparency in the setting of standards.[7]

Regional variants

[edit]

Europe

[edit]

Products located in members of the European Union can use the EU Ecolabel pending the EU's approval.[8] EMAS is another EU label[9][10] that signifies whether an organization management is green as opposed to the product.[11] Germany also uses the Blue Angel, based on Germany's standard.[12][13]

In Europe, there are many different ways that companies are using environmentally friendly processes, eco-friendly labels, and overall changing guidelines to ensure that there is less harm being done to the environment and ecosystems while their products are being made. In Europe, for example, many companies are already using EMAS[citation needed] labels to show that their products are friendly.[14]

Companies

[edit]

Many companies in Europe make putting eco-labels on their products a top-priority since it can result to an increase in sales when there are eco-labels on these products. In Europe specifically, a study was conducted that shows a connection between eco-labels and the purchasing of fish: "Our results show a significant connection between the desire for eco-labeling and seafood features, especially the freshness of the fish, the geographical origin of the fish and the wild vs farmed origin of the fish".[15] This article shows that eco-labels are not only reflecting a positive impact on the environment when it comes to creating and preserving products, but also increase sales. However, not all European countries agree on whether certain products, especially fish, should have eco-labels. In the same article, it is remarked: "Surprisingly, the country effect on the probability of accepting a fish eco-label is tricky to interpret. The countries with the highest level of eco-labeling acceptability are Belgium and France".[16] According to the same analysis and statistics, France and Belgium are most likely of accepting these eco-labels.

North America

[edit]

In the United States, environmental marketing claims require caution. Ambiguous titles such as environmentally friendly can be confusing without a specific definition; some regulators are providing guidance.[17] The United States Environmental Protection Agency has deemed some ecolabels misleading in determining whether a product is truly "green".[18]

In Canada, one label is that of the Environmental Choice Program.[12] Created in 1988,[19] only products approved by the program are allowed to display the label.[20]

Overall, Mexico was one of the first countries in the world to pass a specific law on climate change. The law set an obligatory target of reducing national greenhouse-gas emissions by 30% by 2020. The country also has a National Climate Change Strategy, which is intended to guide policymaking over the next 40 years.[21]

Oceania

[edit]

The Energy Rating Label is a Type III label[22][23] that provides information on "energy service per unit of energy consumption".[24] It was first created in 1986, but negotiations led to a redesign in 2000.[25]

Oceania generates the second most e-waste, 16.1 kg, while having the third lowest recycling rate of 8.8%.[26] Out of Oceania, only Australia has a policy in policy to manage e-waste, that being the Policy Stewardship Act published in 2011 that aimed to manage the impact of products, mainly those in reference to the disposal of products and their waste.[27] Under the Act the National Television and Computer Recycling Scheme (NTCRS) was created, which forced manufactures and importers of electrical and electronic equipment (EEE) importing 5000 or more products or 15000 or more peripherals be liable and required to pay the NTCRS for retrieving and recycling materials from electronic products.

New Zealand does not have any law that directly manages their e-waste, instead they have voluntary product stewardship schemes such as supplier trade back and trade-in schemes and voluntary recycling drop-off points. Though this has helped it costs the provider money with labor taking up 90% of the cost of recycling. In addition, e-waste is currently not considered a priority product, which would encourage the enforcement of product stewardship. In Pacific Island Regions (PIR), e-waste management is a hard task since they lack the adequate amount of land to properly dispose of it even though they produce one of the lowest amounts of e-waste in the world due to their income and population. Due to this there are large stockpiles of waste unable to be recycled safely.

Currently, The Secretariat of the Pacific Regional Environment Programme (SPREP), an organization in charge of managing the natural resources and environment of the Pacific region, is in charge of region coordination and managing the e-waste of the Oceania region.[28] SPREP uses Cleaner Pacific 2025 as a framework to guide the various governments in the region.[29] They also work with PacWaste (Pacific Hazardous Waste) to identify and resolve the different issues with waste management of the islands, which largely stem from the lack of government enforcement and knowledge on the matter.[30] They have currently proposed a mandatory product stewardship policy be put in place along with an advance recycling fee which would incentivize local and industrial recycling. They are also in the mindset that the islands should collaborate and share resources and experience to assist in the endeavor.

With the help from the NTCRS, though the situation has improved they have been vocal about the responsibilities of stakeholders in the situation and how they need to be more clearly defined. In addition to there being a differences in state and federal regulations, with only Southern Australia, Australian Capital Territory, and Victoria having banned e-waste landfill, it would be possible to make this apply the rest of the region if a federal decision was made. They have also advocated for reasonable access to collection points for waste, with there being only one collection point within a 100 km radius in some cases. It has been shown that the reason some residents do not recycle is because of their distance from a collection point. In addition, there have been few campaigns to recycle, with the company, Mobile Muster, a voluntary collection program managed by the Australian Mobile Telecommunication Association, aimed to collect phones before they went to a landfill and has been doing so since 1999. Upon further study, it was found that only 46% of the public was award of the program, which later increased to 74% in 2018, but this was after an investment of $45 million from the Australian Mobile Telecommunication Association.

Asia

[edit]

"Economic growth in Asia has increased in the past three decades and has heightened energy demand, resulting in rising greenhouse gas emissions and severe air pollution. To tackle these issues, fuel switching and the deployment of renewables are essential."[31] However, as countries continue to advance, it leads to more pollution as a result of increased energy consumption. In recent years, the biggest concern for Asia is its air pollution issues. Major Chinese cities such as Beijing have received the worst air quality rankings (Li et al., 2017). Seoul, the capital of South Korea, also suffers from air pollution (Kim et al., 2017). Currently, Indian cities such as Mumbai and Delhi are overtaking Chinese cities in the ranking of worst air quality. In 2019, 21 of the world's 30 cities with the worst air quality were in India."

The environmentally friendly trends are marketed with a different color association, using the color blue for clean air and clean water, as opposed to green in western cultures. Japanese- and Korean-built hybrid vehicles use the color blue instead of green all throughout the vehicle, and use the word "blue" indiscriminately.[32]


China

[edit]

According to Shen, Li, Wang, and Liao, the emission trading system that China had used for its environmentally friendly journey was implemented in certain districts and was successful in comparison to those which were used in test districts that were approved by the government.[33] This shows how China tried to effectively introduce new innovative systems to impact the environment. China implemented multiple ways to combat environmental problems even if they didn't succeed at first. It led to them implementing a more successful process which benefited the environment. Although China needs to implement policies like, "The “fee-to-tax” process should be accelerated, however, and the design and implementation of the environmental tax system should be improved. This would form a positive incentive mechanism in which a low level of pollution correlates with a low level of tax." By implementing policies like these companies have a higher incentive to not over pollute the environment and instead focus on creating an eco-friendlier environment for their workplaces. In doing so, it will lead to less pollution being emitted while there also being a cleaner environment. Companies would prefer to have lower taxes to lessen the costs they have to deal with, so it encourages them to avoid polluting the environment as much as possible.

International

[edit]

Energy Star is a program with a primary goal of increasing energy efficiency and indirectly decreasing greenhouse gas emissions.[34] Energy Star has different sections for different nations or areas, including the United States,[35] the European Union[36] and Australia.[37] The program, which was founded in the United States, also exists in Canada, Japan, New Zealand, and Taiwan.[38] Additionally, the United Nations Sustainable Development Goal 17 has a target to promote the development, transfer, dissemination, and diffusion of environmentally friendly technologies to developing countries as part of the 2030 Agenda.[39]

See also

[edit]

References

[edit]
  1. ^ "nature-friendly". Webster's New Millennium Dictionary of English, Preview Edition (v 0.9.7). Lexico Publishing Group, LLC.
  2. ^ Motavalli, Jim (12 February 2011). "A History of Greenwashing: How Dirty Towels Impacted the Green Movement". AOL.
  3. ^ "Grønvaskere invaderer børsen" [Greenwashers invade the market]. EPN.dk (in Danish). Jyllands-Posten. 21 June 2008. Archived from the original on 5 July 2008. Retrieved 22 December 2012.
  4. ^ Greenwashing Fact Sheet. 22 March 2001. Retrieved 14 November 2009. from corpwatch.org Archived 7 February 2017 at the Wayback Machine
  5. ^ "Eco friendly production key to achieving sdgs".
  6. ^ United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  7. ^ "international standards for eco-labeling". Green Seal. Archived from the original on 28 November 2012. Retrieved 9 December 2012.
  8. ^ "Welcome to the European Union Eco-label Homepage". EUROPA. Retrieved 10 July 2007.
  9. ^ "EMAS". EUROPA. Retrieved 10 July 2007.
  10. ^ "Eco-Management and Audit Scheme (EMAS)". Green Business. Retrieved 15 May 2023.
  11. ^ "Minutes" (PDF). EUEB Coordination and Cooperation Management Group. Archived from the original (PDF) on 12 February 2007. Retrieved 10 July 2007.
  12. ^ a b "Environmental Labels Type I". Ricoh. Retrieved 10 July 2007.
  13. ^ Freimann, Jurgen; Schwedes, Roswitha (2000). <99::aid-ema135>3.0.co;2-x "EMAS experiences in German companies: a survey on empirical studies". Eco-Management and Auditing. 7 (3): 99–105. doi:10.1002/1099-0925(200009)7:3<99::aid-ema135>3.0.co;2-x. ISSN 0968-9427.
  14. ^ "EUROPA - Environment - Ecolabel - FAQ". ec.europa.eu. Retrieved 22 February 2023.
  15. ^ Brécard, Dorothée; Hlaimi, Boubaker; Lucas, Sterenn; Perraudeau, Yves; Salladarré, Frédéric (15 November 2009). "Determinants of demand for green products: An application to eco-label demand for fish in Europe". Ecological Economics. The DPSIR framework for Biodiversity Assessment. 69 (1): 115–125. Bibcode:2009EcoEc..69..115B. doi:10.1016/j.ecolecon.2009.07.017. ISSN 0921-8009.
  16. ^ Miras Rodríguez, María del Mar; Escobar Pérez, Bernabé; Carrasco Gallego, Amalia (2015). "Are companies less environmentally-friendly due to the crisis? Evidence from Europe". hdl:11441/85190. ISSN 2182-8466. cite journal: Cite journal requires |journal= (help)
  17. ^ "Environmental Claims". Federal Trade Commission. 17 November 2008. Retrieved 17 November 2008.
  18. ^ "Labels -environmentally friendly". ecolabels. Archived from the original on 11 October 2007. Retrieved 9 July 2007.
  19. ^ "About the Program". EcoLogo. Archived from the original on 27 May 2006. Retrieved 10 July 2007.
  20. ^ "Environmental Choice (Canada)". Environment Canada. Archived from the original on 25 November 2007. Retrieved 10 July 2007.
  21. ^ Stiftung, Bertelsmann. "SGI 2017 | Mexico | Environmental Policies". www.sgi-network.org. Retrieved 19 February 2021.
  22. ^ "Overview of Regulatory Requirements - Labelling and MEPS". Energy Rating Label. Archived from the original on 1 July 2007. Retrieved 10 July 2007.
  23. ^ Arnaud Bizard; Brett Lee; Karen Puterrman. "AWARE and Environmental Labeling Programs: One Step Closer to a Sustainable Economy" (PDF). ME 589. Retrieved 10 July 2007. cite journal: Cite journal requires |journal= (help)
  24. ^ "Overview of how are star ratings calculated?". Energy Rating Label. Archived from the original on 13 July 2007. Retrieved 10 July 2007.
  25. ^ "The Energy Label". Energy Rating Label. Archived from the original on 13 July 2007. Retrieved 10 July 2007.
  26. ^ Van Yken, Jonovan; Boxall, Naomi J.; Cheng, Ka Yu; Nikoloski, Aleksandar N.; Moheimani, Navid R.; Kaksonen, Anna H. (August 2021). "E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania". Metals. 11 (8): 1313. doi:10.3390/met11081313.
  27. ^ "Review of the Product Stewardship Act 2011" (PDF).
  28. ^ "About Us | Pacific Environment".
  29. ^ "Cleaner Pacific 2025. Pacific Regional Waste and Pollution Management Strategy" (PDF). un.org. Retrieved 26 September 2023.
  30. ^ "What is Pacwaste? | Pacific Environment".
  31. ^ Arimura, Toshi H.; Sugino, Makoto (7 August 2020). "Energy-Related Environmental Policy and Its Impacts on Energy Use in Asia". Asian Economic Policy Review. 16 (1). Wiley: 44–61. doi:10.1111/aepr.12319. ISSN 1832-8105. S2CID 225416259.
  32. ^ "S.Korea unveils 'recharging road' for eco-friendly buses". phys.org. Retrieved 28 May 2021.
  33. ^ Ge, Wenjun; Yang, Derong; Chen, Weineng; Li, Sheng (7 February 2023). "Can Setting Up a Carbon Trading Mechanism Improve Urban Eco-Efficiency? Evidence from China". Sustainability. 15 (4). MDPI AG: 3014. doi:10.3390/su15043014. ISSN 2071-1050.
  34. ^ "About Energy Star". Energy Star. Retrieved 10 July 2007.
  35. ^ "United States Energy Star Home Page". Energy Star. Retrieved 10 July 2007.
  36. ^ "EU Energy Star Home Page". Energy Star. Retrieved 10 July 2007.
  37. ^ "Australia Energy Star Home Page". Energy Star. Archived from the original on 3 July 2007. Retrieved 10 July 2007.
  38. ^ "Who's Working With ENERGY STAR? International Partners". Energy Star. Retrieved 3 February 2009.
  39. ^ "Goal 17 | Department of Economic and Social Affairs". sdgs.un.org. Retrieved 26 September 2020.

Photo
Photo
Photo
Photo
Photo

Driving Directions in New Hanover County


Driving Directions From Catch to The Dumpo Junk Removal & Hauling
Driving Directions From BLUE SURF Arboretum West to The Dumpo Junk Removal & Hauling
Driving Directions From P T's Olde Fashioned Grille to The Dumpo Junk Removal & Hauling
Driving Directions From China One to The Dumpo Junk Removal & Hauling
Driving Directions From The Children's Museum of Wilmington to The Dumpo Junk Removal & Hauling
Driving Directions From Battleship North Carolina to The Dumpo Junk Removal & Hauling
Driving Directions From Wilmington Railroad Museum to The Dumpo Junk Removal & Hauling
Driving Directions From Bellamy Mansion Museum to The Dumpo Junk Removal & Hauling

Reviews for


Kelly Vaughn

(5)

Great service with professionalism. You can't ask for more than that!

Greg Wallace

(5)

I highly recommend Dumpo Junk Removal. Very professional with great pricing and quality work.

Howard Asberry

(5)

The manager was very helpful, knowledgeable and forthright. He definitely knew what he was talking about and explained everything to me and was very helpful. I'm looking forward to working with him

Kirk Schmidt

(5)

They are great with junk removal. Highly recommend them

Jennifer Davidson

(5)

Great work! Bryce and Adrian are great!

View GBP

Frequently Asked Questions

Time-based service charges for e-waste processing can vary based on factors such as the providers operational costs, the complexity of the waste being processed, regional labor rates, and their level of expertise. Some facilities may charge a flat hourly rate while others might base their fees on the weight or type of e-waste.
The components that typically contribute most to time-based charges in e-waste processing include manual sorting and dismantling of devices, data destruction processes, specialized treatment for hazardous materials like batteries and CRT glass, and compliance with regulatory requirements. These steps are labor-intensive and require skilled personnel.
Strategies to minimize time-based service charges include streamlining collection logistics to reduce handling times, optimizing sorting processes through automation where possible, negotiating bulk-processing discounts with providers, ensuring proper initial segregation by type at collection points to facilitate faster processing, and choosing providers who offer integrated services efficiently.